Electrocatlytic oxidation of ascorbic acid mediated by ZnO microcrystalline modified glassy carbon electrode

نویسندگان

  • WEETEE TAN
  • MOHAMMED ZIDAN
  • ZULKARNAIN ZAINAL
  • ABDUL HALIM ABDULLAH
چکیده

Modification of a glassy carbon (GC) electrode surface by adhered microparticles of zinc oxide (ZnO) using electrochemical performance of microparticles of ZnO/GC electrode shows excellent electrocatalytic activity towards the oxidation of ascorbic acid in 0.1 M KH2PO4 electrolyte solution by cyclic voltammetry (CV). This paper seeks to critically examine the modification of GC electrode with Zinc oxide microparticles and the effect on oxidation of ascorbic acid using cyclic voltammetry technique. ZnO/GC electrode exhibited obvious enhancing and electrocatalyzing effect as it causes the oxidation current of ascorbic acid to increase by 1.5 times as compared to bare GC electrode. The sensitivity under conditions of cyclic voltammetry is significantly dependent on pH and ZnO dosage. The variation of scan rate study shows that the system undergoes diffusion-controlled process. Diffusion coefficient and rate constant of ascorbic acid were determined using hydrodynamic method (rotation disk electrode) with values of 5.4 x 10-6 cm2s-1 and 2.5x 10-3cms-1 respectively for unmodified electrode, while the values of diffusion coefficient and rate constant of ascorbic acid using ZnO/GC electrode were 5.7 x 10-6 cm2s-1 and 2.1x10-3cms-1 respectively.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Detection of Ascorbic Acid in Biological Samples by a New Modified Glassy Carbon Electrode

The present work describes the construction of a new modified electrode by casting the appropriate mixture of a metallocene, which has been introduced in the experimental part, as a mediator at the surface of glassy carbon (GC) electrode. The proposed modified GC electrode was used for the determination of ascorbic acid (AA) in phosphate buffer (PB) solution (pH = 4.0). When compared to bare GC...

متن کامل

Fabrication of Nano Poly Cresol Red over Glassy Carbon Electrode and its Application in Selective Determination of Uric acid in the Presence of Ascorbic Acid

A selective electrochemical method for the determination of uric acid was developed by using nano poly cresol red modified glassy carbon electrode. This new material has been characterized by Scanning Electron Microscopy, cyclic voltammetry and Differential pulse voltammetry. This modified electrode shows excellent electrocatalytic activity towards the oxidation of uric acid in the presence of ...

متن کامل

Voltammetric Detection of Dopamine and Ascorbic Acid Using a Multi-Walled Carbon Nanotubes/Schiff Base Complex of Cobalt-Modified Glassy Carbon Electrode

The surface of the glassy carbon electrode (GCE) is modified with the composite of new Cobalt complex with a tetradentate Schiff base ligand derived from 3-ethoxysalicylaldehyde and 4,5-dimethyl orthophenylenediamine (CoOEtSal) and multi-walled carbon nanotube (MWCNT). The electrochemical oxidation of ascorbic acid (AA) and dopamine (DA) at the modified electrode was studied using the cyclic an...

متن کامل

Application of copper oxide nanoparticles modified glassy carbon electrode for electrocatalytic oxidation of methanol

Copper nanoparticles were fabricated by electro-reduction of CuSO4solution in the presence of cetyltrimethylammonium bromide (CTAB) cationic surfactant as an additive through potentiostatic method. The prepared copper nanoparticles were characterized by scanning electron microscopy (SEM) and electrochemical methods. The SEM images reveal that the nanoparticles with diameters at about 70 n...

متن کامل

Simultaneous Voltammetric Measurement of Ascorbic Acid, Epinephrine, Uric Acid and Tyrosine at a Glassy Carbon Electrode Modified with Nanozeolite-Multiwall Carbon Nanotube

In this study, incorporation of iron ion-doped natrolite nanozeolite, multi-wall carbon nanotubes into chitosan-coated glassy carbon electrode for the simultaneous determination of ascorbic acid, epinephrine, uric acid and tyrosine is studied. The results show that the combination of multi-wall carbon nanotubes and iron ion-doped natrolite zeolite causes a dramatic enhancement in the sensitivit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010